from __future__ import annotations
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import tri
xlen = 10
ylen = 16
xPoints = np.arange(0, xlen + 1, 1)
yPoints = np.arange(0, ylen + 1, 1)
gridPoints = np.array([[[x, y] for y in yPoints] for x in xPoints])
a = [
[i + j * (ylen + 1), (i + 1) + j * (ylen + 1), i + (j + 1) * (ylen + 1)]
for i in range(ylen)
for j in range(xlen)
]
triang_a = tri.Triangulation(
gridPoints[:, :, 0].flatten(), gridPoints[:, :, 1].flatten(), a
)
plt.triplot(triang_a, "go-")
plt.plot(gridPoints[:, :, 0], gridPoints[:, :, 1], "bo")
plt.title("Triangulation Visualization")
![<Figure size 640x480 with 1 Axes>](https://cdn.curvenote.com/616d93c9-d385-465a-a37f-8e2dce3e5a1b/public/a3bcdb5a663c40afd59f44ef619f2a2d.png)
xlen = 10
ylen = 16
xPoints = np.arange(0, xlen + 1, 1)
yPoints = np.arange(0, ylen + 1, 1)
gridPoints = np.array([[[x, y] for y in yPoints] for x in xPoints])
b = [
[(i + 1) + (j + 1) * (ylen + 1), (i + 1) + j * (ylen + 1), i + (j + 1) * (ylen + 1)]
for i in range(ylen)
for j in range(xlen)
]
triang_b = tri.Triangulation(
gridPoints[:, :, 0].flatten(), gridPoints[:, :, 1].flatten(), b
)
plt.triplot(triang_b, "ro-")
plt.plot(gridPoints[:, :, 0], gridPoints[:, :, 1], "bo")
plt.title("Triangulation Visualization")
![<Figure size 640x480 with 1 Axes>](https://cdn.curvenote.com/616d93c9-d385-465a-a37f-8e2dce3e5a1b/public/f834e34b248964d7ebf9d353683b98a5.png)
plt.triplot(triang_a, "go-")
plt.triplot(triang_b, "ro-")
![<Figure size 640x480 with 1 Axes>](https://cdn.curvenote.com/616d93c9-d385-465a-a37f-8e2dce3e5a1b/public/7ce41c94df9a36b3346801441dfa9895.png)